Description
Mi-Wave’s 410 Series Waveguide to Coax Transitions allow an efficient method of adapting from rectangular waveguide to a coaxial connector. Full waveguide bands available from 12.4 to 110 GHz.

Low insertion losses and VSWR’s are typical for these adapters. Low cost production versions are available for equipment used and OEM’s. Laboratory grades are also offered on some models.

Applications
Test Equipment
Power Measurement
Broadband Systems

Double-ridged Adapters Available

Ordering Information

PLEASE NOTE:
Lower frequency versions are available from 6.0 GHz and up.

Technical Specifications (typical)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>410KU</th>
<th>410K</th>
<th>410(WR-34)</th>
<th>410A</th>
<th>410B</th>
<th>410U</th>
<th>410V</th>
<th>410E</th>
<th>410W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Band (GHz)</td>
<td>12.4–18.0</td>
<td>18.0–26.5</td>
<td>22.0–33.0</td>
<td>26.5–40.0</td>
<td>33.0–50.0</td>
<td>40.0–60.0</td>
<td>50.0–75.0</td>
<td>60.0–90.0</td>
<td>75–110.0</td>
</tr>
<tr>
<td>Standard Connectors</td>
<td>N, SMA</td>
<td>2.92–2.4</td>
<td>2.92–2.4</td>
<td>2.92, 2.4</td>
<td>2.92, 2.4</td>
<td>2.92, 2.4</td>
<td>1.85, 1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Available</td>
<td>2.92, 2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion Loss (dB) (typ)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>VSWR (typical)</td>
<td>1.3:1</td>
<td>1.3:1</td>
<td>1.3:1</td>
<td>1.3:1</td>
<td>1.3:1</td>
<td>1.3:1</td>
<td><1.7:1</td>
<td><1.7:1</td>
<td></td>
</tr>
</tbody>
</table>
410 Series
Waveguide to Coax Transitions

PARAMETER: -S21-
NORMALIZATION: DATA / MEMORY
REFERENCE PLANE: 0.000 mm
SMOOTHING: 1.0 PERCENT
DELAY APERTURE: -

LOG MAGNITUDE
REF=0.000 dB
2.000 dB/DIV

MARKER 1: 58.5000 GHz
INSERTION LOSS: -0.300 dB

410V/385/1.85 mmf
2 Back to Back

CH1: A-MS -22.00 dB
5.0 dB/ REF 0.00 dB

410V/385/1.85 mmf
VSWR 4

CRSR -22.00 dB
+58.500 GHz